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Scaling behavior of the Abelian sandpile model
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The Abelian sandpile model in two dimensions does not show the type of critical behavior familiar from
equilibrium systems. Rather, the properties of the stationary state follow from the condition that an avalanche
started at a distancer from the system boundary has a probability proportional to 1/Ar to reach the boundary.
As a consequence, the scaling behavior of the model can be obtained from evaluating dissipative avalanches
alone, allowing one not only to determine the values of all exponents, but showing also the breakdown of
finite-size scaling.

PACS number~s!: 05.65.1b
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Since its introduction in 1987, the sandpile model h
been considered as the prototype of a self-organized cri
~SOC! system@1#. Computer simulations suggest that irr
spective of the initial conditions and of details of the mod
rules, the system self organizes into a ‘‘critical’’ state with
power-law size distribution of avalanches. The concept
SOC is thought to explain the frequent occurrence of po
laws in nature. Considerable effort has been made to de
mine the scaling behavior of the two-dimensional Abeli
sandpile model. The advantage of this model is that sev
of its properties can be calculated analytically@2,3#. How-
ever, the exponentt r characterizing the distribution of ava
lanche radii, and related exponentst t and ts for the ava-
lanche duration and the number of topplings have resis
any attempt of an analytical calculation. The numerical
termination of these exponents is hampered by the fact
the double logarithmic plots show slopes that increase w
increasing system size, until finite-size effects set in, indic
ing that the asymptotic scaling behavior does not yet oc
for the system sizes accessible to computer simulatio
Thus, the predictions for the value ofts vary between 1.22
@4# and 1.27@5# or even 1.29@6#. The latter two results were
obtained under the assumption that the system disp
finite-size scaling~FSS!.

Recently, evidence was found that the Abelian sand
model does not display FSS@7#. This result was obtained
from an investigation of multifractal spectra. Indeed, there
no a priori reason why the Abelian sandpile model shou
display FSS. The concept of FSS has its origin in equilibri
critical phenomena where a small finite system cannot
distinguished from a small part of a large system. Howev
this is not the case for the Abelian sandpile model in t
dimensions. In a small system, the sites that participate in
avalanche may topple a few times during the duration of
avalanche. In a larger system, the number of topplings
site during a large avalanche is larger. Also, finite-size s
ing is based on the assumption that boundaries play no
cial role in the system. However, the boundaries of the A
lian sandpile model play an essential role as they are the
place where sand can leave the system.

It is the purpose of this article to elucidate the unconv
tional scaling behavior of the Abelian sandpile model. Sin
boundaries play a special role in the system, it is essentia
consider avalanches that reach the boundaries of the sy
PRE 611063-651X/2000/61~3!/2168~4!/$15.00
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separately from those that do not. It turns out that the di
pative avalanches display beautiful power laws that im
that an avalanche started at a distancer from the system
boundary has a probability proportional to 1/Ar to reach the
boundary and, if it does so, dissipates on an averageAr sand
grains. From the scaling behavior of dissipative avalanch
we obtain the values of the critical exponents characteriz
the system, and we see compelling evidence for the viola
of FSS.

The two-dimensional Abelian sandpile model is defin
on a square lattice withL2 sites. At each sitei an integer
variablezi represents the number of grains. Grains are ad
individually to randomly chosen sites of the system. Wh
the number of grains at a sitei exceedszc53, site i is un-
stable and topples, its height being reduced tozi24, and the
heights$zj% of all four nearest neighbors being increased
1. If i is a boundary site withl ,4 neighbors, 42 l grains
leave the system. If a neighborj becomes unstable due to th
addition of a grain, it also topples, and the avalanche st
when a new stable configuration is reached. During an a
lanche, no new grains are added to the system. The sizes of
an avalanche is defined to be the total number of topplin
The radius of an avalanche is in this paper taken to be
maximum distance of toppled sites from the starting site
the avalanche. It has proven useful to decompose an
lanche into ‘‘waves of toppling’’@9#. The nth wave of top-
pling begins when the starting point of an avalanche topp
for the nth time, and all those sites belong to it that topp
immediately after a nearest neighbor that belongs to the s
wave has toppled.

We denote bynx(x,L) the probability distribution for a
quantityx in a system of sizeL, wherex may stand for the
avalanche radiusr, for the distance of the starting point from
the boundaryl, the areaa, the total number of topplingss, or
the avalanche duration t. Normalization requires
*1

`nx(x,L)dx51. In the limit L→`, and for sufficiently
largex, one expects the distribution to fall off like a powe
law nx(x,L);x2tx. Furthermore, we write the distribution a
the sum of the contributions from dissipative avalanch
@i.e., those avalanches that reach the boundary, supers
(2)] and nondissipative avalanches@superscript (1)],
nx(x,L)5nx

(1)(x,L)1nx
(2)(x,L).
R2168 ©2000 The American Physical Society
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Let us first discuss the radius distribution of avalanch
nr(r ,L). Since its asymptotic~i.e., L→`) behavior is diffi-
cult to extract from simulation data, recent results for t
exponentt r vary between 7/5@7# and 5/3@6#. In @8#, only
avalanches triggered at the center of the system were ev
ated. It was found that the fraction 1/AL of all avalanches
reach the boundaries. This finding would imply thatt r
53/2, just as predicted in@9#, and in agreement with@10#,
but in disagreement with@11# and @7#. In the following, we
show that the exponent 3/2 is indeed the correct expon
Figure 1 shows the result of computer simulations
nr

(2)(r ,L).
The distributionnr

(2)(r ,L) agrees well with the form

nr
(2)~r ,L !;L23/2gr~r /L !. ~1!

In the following, we assume that the numerically found va
3/2 for the exponent in Eq.~1! is exact, and that all othe
exponents are also simple fractions. This is justified by
fact that all those exponents that could be calculated ana
cally, are indeed simple fractions~see, e.g.,@3#!.

With Eq. ~1!, the total weight of dissipative avalanches
*1

Lnr
(2)(r ,L)dr;1/AL, in agreement with the result in@8#

that the fraction 1/AL of all avalanches reach the boundarie
Since grains are dropped randomly into the system, the p
ability that an avalanche is triggered at a fixed distancr
!L from the boundary is proportional to 1/L, leading to
nr

(2)(r ,L)5(1/L) f (r ) for r !L. Together with Eq.~1!, this
givesgr(r /L)}(r /L)21/2 for small r /L. From Fig. 1, it can
be seen that this 1/Ar -behavior extends almost over the e
tire range ofr values. An avalanche triggered at a distancr
from the boundary consequently has a probability prop
tional to 1/Ar to reach the boundary, and if it reaches t
boundary it dissipates on an average of the orderAr sand
grains. The same conclusion follows from the distribution
the distancel to the boundary of the starting point of diss
pative avalanches~see inset of Fig. 1!. An additional confir-
mation of this scaling behavior comes from an analysis
the distribution of the areaa of dissipative avalanches whic

FIG. 1. The radius distribution of avalanches that touch
boundaries of the system, forL5128, 256, 512, 1024, and 2048
The thick solid line is a power law with an exponent21/2. The
inset shows the same scaling collapse for the distribution of
distance of the starting point to the boundary.
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is found to scale as na
(2)(a);L25/2ga(a/L2), with

ga(a/L2)}(a/L2)23/4 for not too largea. ~In order to test the
equivalence,a must be substituted withr 2.!

While the radius distribution of dissipative avalanch
displays clean scaling behavior, the radius distribution
nondissipative avalanches appears not to reach a scalin
gime for the system sizes typically studied in computer sim
lations. Figure. 2 shows the radius distribution of avalanc
that do not reach the boundaries.

No power law is visible. The slope seems to beco
steeper with increasingr. ~The last part of each curve, whic
begins at the point where it splits from the curves for larg
system sizes, is due to finite-size effects and it must be
nored in the subsequent discussion which refers to the t
modynamic limit L→`.! However, the curvesnr

(1)(r ,L)
must approach a power lawnr

(1)(r ,`);r 2tr for sufficiently
large r. The reason is that the last wave of topplings of
avalanche has been proven to be distributed according
power lawr 27/4 @12#, andnr

(1)(r ,`) cannot be steeper tha
this. From the above results fornr

(2)(r ,L), we can even de-
duce the value oft r : The probability that an avalanche trig
gered at distancer from the boundary reaches the bounda
is proportional toLnr

(2)(r ,L), and it is identical to the prob-
ability that an avalanche triggered in the interior of the s
tem reaches at least a radiusr, which is given by
* r

`nr
(1)(r 8,`)dr8. The reason is that the landscape of heig

values in the Abelian sandpile model does not show lo
range correlations. Rather, correlations decay as fast asr 24

@13#, implying that avalanches spread in the same way
erywhere in the system, as long as they do not encounte
boundaries. Consequently,nr

(1)(r ,`) must fall off asr 23/2

for sufficiently larger, fixing the value oft r53/2. Figure 2
shows that this asymptotic value is barely reached for
system sizes accessible to computer simulations. This
plains why evaluations based on the complete radius di
bution nr

(1)(r ,L)1nr
(2)(r ,L) do not reveal the correct expo

nent.
While the radius distribution of dissipative avalanch

obeys finite-size scaling, the distribution of the number

e

e

FIG. 2. The radius distribution of avalanches that do not tou
the boundaries of the system, forL5128, 256, 512, 1024, and 204
from left to right. The dotted line is a power law with the expone
23/2. The wiggles at smallr are due to the discreteness of th
lattice.
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topplings and of the duration time does not. If the number
topplings s in an avalanche of radiusr was always of the
orderr D, simple scaling would hold, resulting in a FSS for
ns(s,L);s2tsC(s/LD) and a scaling relationD5(t r
21)/(ts21). The breakdown of simple scaling in th
model in two dimensions was pointed out for the first time
@8,7#. It can best be visualized by looking at the distributi
of the number of topplingsns

(spanning)(s,L) of those ava-
lanches that span the entire system, i.e., that touch all
edges of the boundary. These avalanches have a radius o
orderL.

The maxima of the curves represented in Fig. 3 scale
LD with D.9/4. The lower cutoffs of the curves can b
made to coincide by assuming a scaling withL2, and the
upper cutoffs scale asL11/4. The mean scales roughly asL5/2.
Clearly, a scaling collapse of the entire curves would only
possible if the four quantities were characterized by the sa
exponent. Only in this case, simple scaling would hold. T
scaling behavior of the mean implies

s̄5E
1

`

sns~s,L !ds;L2,

in agreement with the analytical result given in@2#.
Figure 4 shows the distributionsns

(2)(s,L) of the number

FIG. 3. The distributionns
(spanning)(s,L) of the number of top-

plings in system-spanning avalanches forL52048, 1024, 512, 256
128 ~from widest to narrowest curve!.

FIG. 4. The distributionns
(2)(s,L) of the number of topplings in

dissipative avalanches forL52048, 1024, 512, 256, 128, 64~from
widest to narrowest curve!. The dotted line is a power law with th
exponent27/9.
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of topplings in dissipative avalanches. The curves are w
described by the formns

(2)(s,L);L21s27/9 for sufficiently
smalls, and then have a cutoff that does not display FSS
is similar to the one for spanning avalanches. With this fo
of ns

(2)(s,L), the total weight of dissipative avalanche

1/AL, agrees with*1
L9/4

ns
(2)(s,L)ds, confirming the valueD

59/4 suggested by the data shown in Fig. 3 for the frac
dimension of those avalanches that make the main contr
tion to sizes. The exponentts can be derived from a condi
tion similar to the one employed for calculatingt r above,

s121/DLns
(2)~s,L !;E

s

`

ns
(1)~s8,`!ds8,

giving ts511/9, which agrees very well with the value ob
tained by Manna@4#. With the definition ofD used here, the
above scaling relation betweenD andts holds, although FSS
is violated. If FSS was valid, we would additionally haves̄

;LD(22ts)5L7/4 instead ofs̄;L2.
The failure of FSS in the system is due to a broad dis

bution of the number of waves of toppling in avalanche
Single waves of toppling display FSS, as shown in Fig. 5
the first wave of toppling.

The scaling withL2 follows directly from the fact that
waves are compact and that each site topples once in a w
Repeating the evaluation performed already twice, we fi
an exponentts.11/8 for the first wave, which is identical to
the analytically derived exponent for the last wave@12#, and
different from the exponent 5/4 for boundary avalanches i
sector of 3600 @3#. The agreement between the expone
characterizing the first and last wave of topplings find su
port from very recent analytical work@14#, where it is shown
that all waves are equivalent. From the condition that wa
are compact, it follows immediately thatt r57/4 for the first
wave, which means that a fraction proportional to 1/L3/4 of
all first waves reach the boundary. This is independen
confirmed by simulation results for the radius.

For the distribution of duration timest of avalanches ex-
actly the same analysis can be performed as for the num
of topplingss. One finds again a violation of FSS, the typic
duration time of an avalanche of radiusr being;r z with z
54/3, the upper cutoff of the duration time being larger th
r 3/2, and the mean duration time of avalanches, avera

FIG. 5. The distributionns
(2)(s,L) of the number of topplings in

dissipative first waves forL52048, 1024, 512, 256, 128. The dotte
line is a power law with the exponent27/8.
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over all avalanche sizes, beingt̄;L. The following table
summarizes the results for the exponents:

t r t t ts z D

1st wave 7/4 8/5 11/8 5/4 2
avalanche 3/2 11/8 11/9 4/3 9/4

The valuez55/4 for dissipative first waves is in agreeme
with an earlier analytical result in@16#, and with exact cal-
culations in@14#.

In summary, we have shown that the scaling behavio
the Abelian sandpile model in two dimensions is tied to
condition that the fraction 1/Ar of all avalanches started at
distancer from the boundary reach the boundary, rather th
to a self-similarity of large and small avalanches. As a c
sequence, the scaling properties are seen most clearly
the dissipative avalanches, and a violation of FSS can oc

The condition that a fraction proportional to 1/AL of all
avalanches reach the boundaries, together with the two
ditions s̄;L2 and t̄;L seem so simple that they should b
derivable from simple argument. In fact,s̄;L2 follows from
the diffusive motion of sandgrains@2#, and is therefore also
valid in higher dimensions@15#. The first condition is
equivalent to the statement that the probability of triggerin
system spanning avalanche,p, is proportional to the density
of surface sites,r, that topple during a system-spanning av
lanche. The reason is that the productprLd21 is the mean
s
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a

-

number of grains dissipated during an avalanche, which m
be identical to 1, resulting inp;r;1/L (d21)/2 (d denotes
the dimension of the system!. A condition p;r holds for
example for percolation clusters in systems above the pe
lation threshold. It also holds at the percolation threshold
there are only a finite number of spanning clusters in
system. In three dimensions, this condition would lead
t r52, which agrees with the simulation result given in@6#.
If avalanches are compact, as suggested by computer s
lations, the exponentta characterizing the area distributio
in three dimensions is thenta54/3, giving a mean avalanch
area;L2. Together with the conditions̄5L2, it follows that
the mean number of topplings is of the same order as
mean area, leading tots54/3 and to the conclusion that th
number of waves of topplings remains finite in the therm
dynamic limit, and that FSS is not violated in three dime
sions. Finally, a compact avalanche ofs̄5L2 sites has a ra-
dius L2/d. In two dimensions, this corresponds to the me
avalanche durationt̄ . If we assume the same in three dime
sions, we havet̄;L2/3, and we findt t58/5, again in agree-
ment with simulation results@6#. In dimensions above the
upper critical dimension 4@17#, avalanches are no mor
compact, and the system may contain many spanning c
ters, and the above arguments can therefore not be app

This work was supported by EPSRC Grant No. G
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