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Scaling behavior of the Abelian sandpile model
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The Abelian sandpile model in two dimensions does not show the type of critical behavior familiar from
equilibrium systems. Rather, the properties of the stationary state follow from the condition that an avalanche
started at a distanaefrom the system boundary has a probability proportional t@ 16 reach the boundary.

As a consequence, the scaling behavior of the model can be obtained from evaluating dissipative avalanches
alone, allowing one not only to determine the values of all exponents, but showing also the breakdown of
finite-size scaling.

PACS numbe(s): 05.65+b

Since its introduction in 1987, the sandpile model hasseparately from those that do not. It turns out that the dissi-
been considered as the prototype of a self-organized criticgdative avalanches display beautiful power laws that imply
(SO0 system[1]. Computer simulations suggest that irre- that an avalanche started at a distancEom the system
spective of the initial conditions and of details of the modelboundary has a probability proportional toyt/to reach the
rules, the system self organizes into a “critical” state with apoundary and, if it does so, dissipates on an aveKEggand
power-law size distribution of avalanches. The concept ofrains. From the scaling behavior of dissipative avalanches,
SOC is thought to explain the frequent occurrence of powefye obtain the values of the critical exponents characterizing

laws in nature. Considerable effort has been made to detefne system, and we see compelling evidence for the violation
mine the scaling behavior of the two-dimensional Abelianys pgg.

sandpile mod_el. The advantage of this quel is that several The two-dimensional Abelian sandpile model is defined
of its properties can be calculated analyticdly3). How- on a square lattice with.? sites. At each sité an integer

ever, the exponent; characterizing the distribution of ava- variablez; represents the number of grains. Grains are added

ki radn,.and related exponentsand Ts for the ava- individually to randomly chosen sites of the system. When
lanche duration and the number of topplings have reaste%e number of grains at a siteexceedsz, =3, sitei is un
n e =9, -

any attempt of an analytical calculation. The numerical de- bi q les. its heiaht bei duced tod. and th
termination of these exponents is hampered by the fact tha@b'e and topples, its height being reducea;to4, and the

the double logarithmic plots show slopes that increase wittgeights{z;} of all four nearest neighbors being increased by
increasing system size, until finite-size effects set in, indicatd- If | is @ boundary site with<4 neighbors, 41 grains
ing that the asymptotic scaling behavior does not yet occule@ve the system. If a neighbpbecomes unstable due to the
for the system sizes accessible to computer simulationgddition of a grain, it also topples, and the avalanche stops
Thus, the predictions for the value of vary between 1.22 When a new stable configuration is reached. During an ava-
[4] and 1.27[5] or even 1.296]. The latter two results were lanche, no new grains are added to the system. Thessize
obtained under the assumption that the system displaygn avalanche is defined to be the total number of topplings.
finite-size scaling FSS. The radius of an avalanche is in this paper taken to be the
Recently, evidence was found that the Abelian sandpilenaximum distance of toppled sites from the starting site of
model does not display FS[F]. This result was obtained the avalanche. It has proven useful to decompose an ava-
from an investigation of multifractal spectra. Indeed, there iSanche into “waves of toppling’{9]. The nth wave of top-
no a priori reason why the Abelian sandpile model shouldpling begins when the starting point of an avalanche topples
display FSS. The concept of FSS has its origin in equilibriumor the nth time, and all those sites belong to it that topple
critical phenomena where a small finite system cannot bgnmediately after a nearest neighbor that belongs to the same
distinguished from a small part of a large system. Howevery,ave has toppled.
this is not the case for the Abelian_sandpile qu.el in _two We denote byn(x,L) the probability distribution for a
dimensions. In a small system, the sites that participate in aauantityx in a system of sizé&., wherex may stand for the
ng:gngﬂg Tr?yat?zfrple a fe\év t'mfﬁ durmgbthe ?liratul).n of th%valanche radius, for the distance of the starting point from
) e ger sysiem, e nUmber ot topplings pef, boundary, the areas, the total number of topplings or
site during a large avalanche is larger. Also, finite-size scal-he avalanche  durationt. Normalization  requires
ing is based on the assumption that boundaries play no sp%—w L A,
cial role in the system. However, the boundaries of the Abed 1Mx(x,L)dx=1. In the limit L—, and for sufficiently

lian sandpile model play an essential role as they are the onkA"9€X, one expects the distribution to fall off like a power
place where sand can leave the system. aw n,(x,L)~x""x, Furthermore, we write the distribution as

It is the purpose of this article to elucidate the unconvenihe sum of the contributions from dissipative avalanches
tional scaling behavior of the Abelian sandpile model. Sincdi-€., those avalanches that reach the boundary, superscript
boundaries play a special role in the system, it is essential t62)] and nondissipative avalanchegsuperscript (1)],
consider avalanches that reach the boundaries of the systamy(x,L)=n{"(x,L)+n{®(x,L).
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FIG. 1. The radius distribution of avalanches that touch the FIG. 2. The radius distribution of avalanches that do not touch
boundaries of the system, for=128, 256, 512, 1024, and 2048. the boundaries of the system, for= 128, 256, 512, 1024, and 2048
The thick solid line is a power law with an exponentl/2. The  from left to right. The dotted line is a power law with the exponent
inset shows the same scaling collapse for the distribution of the-3/2. The wiggles at small are due to the discreteness of the
distance of the starting point to the boundary. lattice.

Let us first discuss the radius distribution of avalanches,s ¢5ind to scale as n®(a)~L 5%, (a/lL?), with
n,(r,L). Since its asymptoti¢i.e., L—o0) behavior is diffi- 9 (a/Lz)oc(a/Lz)‘3’4for not taoo largea. (In grder fo test the
cult to extract from simulation data, recent results for theeauivalencea must be substituted with?.)
exponentr, vary between 7/47] and 5/3[6]. In [8], only While the radius distribution of dissipative avalanches
avalanches triggered at the center of the system were evaIHi

on il splays clean scaling behavior, the radius distribution of
ated. It was found that the fraction\ll of all avalanches hqnqissipative avalanches appears not to reach a scaling re-

reach the boundaries. This finding would imply that  gime for the system sizes typically studied in computer simu-

=3/2, just as predicted if9], and in agreement withl0],  |ations. Figure. 2 shows the radius distribution of avalanches
but in disagreement withl1] and[7]. In the following, we  ihat do not reach the boundaries.

show that the exponent 3/2 is indeed the correct exponent. power law is visible. The slope seems to become
Figure 1 shows the result of computer simulations forgieeper with increasing (The last part of each curve, which

”Ez)(r:L)- begins at the point where it splits from the curves for larger
The distributionn(®)(r, L) agrees well with the form system sizes, is due to finite-size effects and it must be ig-
nored in the subsequent discussion which refers to the ther-
nA(r,L)~L "2, (r/L). (1)  modynamic limit L—o.) However, the curvesi)(r,L)

must approach a power lam*)(r,o)~r =" for sufficiently

In the following, we assume that the numerically found valuelarger. The reason is that the last wave of topplings of an
3/2 for the exponent in Eq.) is exact, and that all other avalanche has been proven to be distributed according to a
exponents are also simple fractions. This is justified by thepower lawr ~"#[12], and nﬁl)(r,OO) cannot be steeper than
fact that all those exponents that could be calculated analytihis. From the above results fof?)(r,L), we can even de-
cally, are indeed simple fractiorisee, e.g.[3]). duce the value of, : The probability that an avalanche trig-

With Eq. (1), the total weight of dissipative avalanches is gered at distance from the boundary reaches the boundary
F5n®(r,L)dr~1/4/L, in agreement with the result i8] s proportional toLn®(r,L), and it is identical to the prob-
that the fraction 1{L of all avalanches reach the boundaries.ability that an avalanche triggered in the interior of the sys-
Since grains are dropped randomly into the system, the prohem reaches at least a radius which is given by
ability that an avalanche is triggered at a fixed distance ["n()(r’,.)dr’. The reason is that the landscape of height
<L from the boundary is proportional to L1/ leading to  values in the Abelian sandpile model does not show long-
n®(r,L)=(1L)f(r) for r<L. Together with Eq(1), this  range correlations. Rather, correlations decay as fast 4s
gives g, (r/L)o<(r/L) Y2 for smallr/L. From Fig. 1, it can [13], implying that avalanches spread in the same way ev-
be seen that this {f-behavior extends almost over the en- erywhere in the system, as long as they do not encounter the
tire range ofr values. An avalanche triggered at a distance boundaries. ConsequentlySl)(r,oo) must fall off asr 372
from the boundary consequently has a probability proporfor sufficiently larger, fixing the value ofr,=3/2. Figure 2
tional to 1Ar to reach the boundary, and if it reaches theshows that this asymptotic value is barely reached for the
boundary it dissipates on an average of the ordersand  system sizes accessible to computer simulations. This ex-
grains. The same conclusion follows from the distribution ofplains why evaluations based on the complete radius distri-
the distance to the boundary of the starting point of dissi- bution n®(r,L)+n{®(r,L) do not reveal the correct expo-
pative avalanchetsee inset of Fig. )1 An additional confir- nent.
mation of this scaling behavior comes from an analysis of While the radius distribution of dissipative avalanches
the distribution of the area of dissipative avalanches which obeys finite-size scaling, the distribution of the number of
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FIG. 3. The distributiom{®P*"""%s,|) of the number of top- FIG. 5. The distributiom{?)(s,L) of the number of topplings in
plings in system-spanning avalanchesfer2048, 1024, 512, 256, dissipative first waves fdr=2048, 1024, 512, 256, 128. The dotted
128 (from widest to narrowest curye line is a power law with the exponent7/8.

topplings and of the duration time does not. If the number ofof topplings in dissipative avalanches. The curves are well
topplings s in an avalanche of radius was always of the described by the fornm{®)(s,L)~L ~*s~ " for sufficiently
orderrP, simple scaling would hold, resulting in a FSS form smalls, and then have a cutoff that does not display FSS but
ng(s,L)~s "sC(s/LP) and a scaling relationD=(7, is similar to the one for spanning avalanches. With this form
—1)/(7s—1). The breakdown of simple scaling in this of n{¥)(s,L), the total weight of dissipative avalanches,
model in two dimensions was pointed out for the first time inq; " aqrees with L9/4n(2) s.L)ds. confirmina the valud
[8,7). It can best be Vis“?‘”ze?sgxn!ﬁfkmg at the distribution zg;l, sgggested tf))l/ thé éa’ta)shéwn in Fig.g3 for the fractal
of the number of topplingsg (s_,L) of those ava-  yimension of those avalanches that make the main contribu-
lanches that span the entire system, i.e., that touch_all foUYon to sizes. The exponent can be derived from a condi-
edé;es of the boundary. These avalanches have a radius of the,, similar to the one employed for calculating above,
orderL.

The maxima of the curves represented in Fig. 3 scale as
LP with D=9/4. The lower cutoffs of the curves can be
made to coincide by assuming a scaling with, and the
upper cutoffs scale ds'%. The mean scales roughly B8%.  giving 7.=11/9, which agrees very well with the value ob-
Clearly, a scaling collapse of the entire curves would only b&ained by Mannd4]. With the definition ofD used here, the
possible if the four quantities were characterized by the samgpoye scaling relation betwe@nand ¢ holds, although FSS

exponent. Only in this case, s!mple scaling would hold. Thels violated. If FSS was valid, we would additionally hase
scaling behavior of the mean implies D(2— 704 ; =
~LPC@=7) = " instead ofs~L?.

I ) The failure of FSS in the system is due to a broad distri-
S= J; sny(s,L)ds~L?, bution of the number of waves of toppling in avalanches.

Single waves of toppling display FSS, as shown in Fig. 5 for
the first wave of toppling.

The scaling withL? follows directly from the fact that
waves are compact and that each site topples once in a wave.
Repeating the evaluation performed already twice, we find
an exponents=11/8 for the first wave, which is identical to
the analytically derived exponent for the last w4%€], and
different from the exponent 5/4 for boundary avalanches in a
sector of 360 [3]. The agreement between the exponents
characterizing the first and last wave of topplings find sup-
port from very recent analytical wofl 4], where it is shown
that all waves are equivalent. From the condition that waves
are compact, it follows immediately that= 7/4 for the first
wave, which means that a fraction proportional ta* of

i all first waves reach the boundary. This is independently
= Ly = = 160 confirmed by simulation results for the radius.
2.05 For the distribution of duration timesof avalanches ex-

sl actly the same analysis can be performed as for the number

FIG. 4. The distributiom{®(s,L) of the number of topplings in  Of topplingss. One finds again a violation of FSS, the typical
dissipative avalanches far=2048, 1024, 512, 256, 128, om  duration time of an avalanche of radiudeing ~r* with z

widest to narrowest curyeThe dotted line is a power law with the =4/3, the upper cutoff of the duration time being larger than
exponent—7/9. r32, and the mean duration time of avalanches, averaged

sl’”DLngz)(s,L)~f n(s’ w)ds’,
S

in agreement with the analytical result given[Rl.
Figure 4 shows the distributiong?)(s,L) of the number
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over all avalanche sizes, beirtg-L. The following table number of grains dissipated during an avalanche, which must

summarizes the results for the exponents: be identical to 1, resulting ip~p~1/1L""" (d denotes
7 T Ts z D the dimension of the systemA condition p~p holds for
example for percolation clusters in systems above the perco-
1st wave 714 8/5 11/8 5/4 2 |ation threshold. It also holds at the percolation threshold, if
avalanche 3/2 11/8 11/9 4/3 9/4 there are only a finite number of spanning clusters in the

o . system. In three dimensions, this condition would lead to
The valuez=5/4 for dissipative first waves is in agreement 7.=2, which agrees with the simulation result given[&].
with an earlier analytical result ifl6], and with exact cal- | gyalanches are compact, as suggested by computer simu-
culations in[14]. lations, the exponent, characterizing the area distribution
In summary, we have shown that the scaling behavior ofy three dimensions is then,= 4/3, giving a mean avalanche
the Apehan sandpile model In two dimensions is tied to thearea~L2. Together with the conditios=L2, it follows that
condition that the fraction 4k of all avalanches started at a the mean number of topplings is of the same order as the

distancer from the boundary reach the boundary, rather thar}nean area, leading ta.=4/3 and to the conclusion that the

to a self-similarity qf large and. small avalanches. As a CONY umber of waves of topplings remains finite in the thermo-
sequence, the scaling properties are seen most clearly fro

NN L Wynamic limit, and that FSS is not violated in three dimen-
the dissipative avalanches, and a violation of FSS can occur Finall ‘ lanchest L2 sites h
The condition that a fraction proportional toyl/ of all sions. Finally, a compact avalanche SItes has a ra-

. 2/d . . .
avalanches reach the boundaries, together with the two coﬁj-Ius L= In two_dl_mensmns, this correspon_ds to the.mean
ditions s—L2 andt~L seem so simple that they should be avalanche duration. If we assume the same in three dimen-

derivable from simple argument. In fast-L? follows from ~ S'0"S: W€ have L2 and we findr,=8/5, again in agree-
the diffusive motion of sandgrairf&], and is therefore also ment W't.h. S|mu!at|0n 'result$6]. In dimensions above the
valid in higher dimensiongd15]. The first condition is upper critical dimension 417], avalqnches are no more
equivalent to the statement that the probability of triggering compact, and the system may contain many spanning C!US'
system spanning avalanche,is proportional to the density ers, and the above arguments can therefore not be applied.
of surface sitesp, that topple during a system-spanning ava- This work was supported by EPSRC Grant No. GR/
lanche. The reason is that the prodpet. 9! is the mean K79307.
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